Protein–Protein Interface Topology as a Predictor of Secondary Structure and Molecular Function Using Convolutional Deep Learning

نویسندگان

چکیده

To power the specific recognition and binding of protein partners into functional complexes, a wealth information about structure function is necessarily encoded global shape protein–protein interfaces their local topological features. identify whether this case, study uses convolutional deep learning methods (typically leveraged for 2D image recognition) on 3D voxel representations colored by burial depth. A novel two-stage network fed with voxelizations each interface at two distinct resolutions achieves balance between performance computational cost. From interfaces, tries to predict presence secondary motifs molecular corresponding complex. Secondary certain classes are found be very well predicted, validating hypothesis that conveyor higher-level information. Interface patterns triggering also identified described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning exte...

متن کامل

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

Protein Secondary Structure Prediction Using Deep Multi-scale Convolutional Neural Networks and Next-Step Conditioning

Recently developed deep learning techniques have significantly improved the accuracy of various speech and image recognition systems. In this paper we adapt some of these techniques for protein secondary structure prediction. We first train a series of deep neural networks to predict eight-class secondary structure labels given a protein’s amino acid sequence information and find that using rec...

متن کامل

Prediction of protein function using a deep convolutional neural network

5 Background. The availability of large databases containing high resolution three-dimensional (3D) models of proteins in conjunction with functional annotation allows the exploitation of advanced supervised machine learning techniques for automatic protein function prediction. 6

متن کامل

A balanced secondary structure predictor.

Secondary structure (SS) refers to the local spatial organization of a polypeptide backbone atoms of a protein. Accurate prediction of SS can provide crucial features to form the next higher level of 3D structure of a protein accurately. SS has three different major components, helix (H), beta (E) and coil (C). Most of the SS predictors express imbalanced accuracies by claiming higher predictio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Information and Modeling

سال: 2021

ISSN: ['1549-960X', '1549-9596']

DOI: https://doi.org/10.1021/acs.jcim.1c00644